Seminar 1.

Task 1. In Microland there are n people, each has a utility function, $u(x_1,x_2)=x_1^{\alpha_1}x_2^{\alpha_2}$, where x_1,x_2 - the number of goods, $\alpha_1+\alpha_2=1$, $\alpha_1\geq 0,\alpha_2\geq 0$. All individuals have incomes in the amount b. Create a program that for a given n, commodity prices simulates the total consumption of goods in the country depending on income level b.

Task 2. In Microland live n people, each a utility function $u(x_1, x_2) = x_1^{\alpha_1} x_2^{\alpha_2}$, where x_1, x_2 - the number of goods, and for each inhabitant - a random evenly distributed value in the interval [0,3; 0.7], $\alpha_2 = 1 - \alpha_1$, $\alpha_1 \ge 0$, $\alpha_2 \ge 0$. In each period:

- all individuals receive incomes that are randomly normally distributed with parameters (1000; 160);
- individuals decide to buy goods, spending all available income;
- K% of individuals who cannot meet the minimum need for goods die of hunger;
- population growth in the presence of hunger is β_1 %, under other conditions β_2 %;
- producers of goods set prices for products following the functions of supply: $P_1 = 12 + 0.2Q_1$, where Q_1 the total supply of good x_1 , P_1 its price; $P_2 = 5 + 0.7Q_2$, where Q_2 the total supply of goods, P_2 its price.

Create a program that simulates the total consumption of goods in the country in the first M periods.